

Darstellung, Struktur und Komplexierung von 2,2',5,5'-Tetrahydro-1,1'-bi(1*H*-1,2,5-phosphadiborol)-Derivaten

Matthias Drieß, Pascal Frankhauser, Hans Pritzkow und Walter Siebert*

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Ncuenheimer Feld 270, W-6900 Heidelberg

Eingegangen am 11. Dezember 1990

Key Words: 1*H*-1,2,5-Phosphadiboroles, dihydro- / 1,1'-Bi(1*H*-1,2,5-phosphadiborole) / Chromium complexes / Iron complexes

Synthesis, Structure, and Complexation of 2,2',5,5'-Tetrahydro-1,1'-bi(1H-1,2,5-phosphadiborole) Derivatives

Reactions of (Z)-1,2-diborylethenes $[HC-B(Cl)R]_2$ with LiPH₂ and LiP(SiMe₃)₂ lead to the 2,5-dihydro-1*H*-1,2,5-phosphadiboroles 1a-d in good yields. 1a, **b** react with (Me₃C)₂Hg to give yellow 2a (56%) and 2b (90%), which are also obtained from 1c, d and TlCl or C₂Cl₆, respectively. The constitution of 2b is established by an X-ray structure analysis. 2a reacts

Frühere Untersuchungen haben gezeigt, daß Bor-funktionalisierte (Z)-1,2-Diborylethene zum Aufbau neuartiger Bor-Heterocyclen geeignet sind^{1,2)}. Fünf- und sechsgliedrige $C_2B_2X_n$ -Ringgerüste (n = 1, 2) mit X = Schwefel, Stickstoff und Phosphor repräsentieren vielseitige π-Komplexliganden in der Übergangsmetallchemie, die über Olefin- und Heteroatom-Donor- sowie Bor-Akzeptor-Funktionen verfügen²⁾. Von Derivaten der phosphorhaltigen Heterocyclen 2,5-Dihydro-1*H*-1,2,5-phosphadiborol 1³⁾ und 1,2,3,6-Tetrahydro-1,2,3,6-diphosphadiborin 3⁴⁾ mit dem C₂B₂P- bzw. C₂B₂P₂-Ringgerüst sind Metallkomplexe bekannt.

with Cr(CO)₃(CH₃CN)₃ to yield the bis(pentacarbonyl)chromium complex **4a**, whereas **2b** and Fe(CO)₃(C₈H₁₄)₂ form the bis(tricarbonyliron) compex **5b**. Spectroscopic studies and Xray structure analyses of **4a** and **5b** show that in **4a** the chromium atom is η^1 -bound to phosphorus, whereas in **5b** the iron interacts with all atoms of the folded C₂B₂P ring.

Die Darstellung der 2,5-Dihydro-1*H*-1,2,5-phosphadiborol-Derivate 1a-d mit Trimethylsilyl- bzw. Wasserstoff-Substituenten am Phosphoratom haben den Zugang zum Ligandensystem 2 ermöglicht, in dem zwei C₂B₂P-Fünfringe über eine Phosphor-Phosphor-Bindung miteinander verknüpft sind. Nachfolgend beschreiben wir die Synthesen von 1a-d und 2a, b sowie die Komplexierung von 2a, b mit Carbonylchrom- und Carbonyleisen-Fragmenten.

Darstellung und Kopplung der 2,5-Dihydro-1*H*-1,2,5phosphadiborole 1a-d zu 2a, b

Durch Umsetzung von (Z)-Diborylethenderivaten $[HC-B(Cl)R]_2$ mit LiPH₂·DME bzw. LiP(SiMe₃)₂·THF im Verhältnis 1:2 entstehen die luftempfindlichen 1,2,5-Phosphadiborole **1a**-**d** in guten Ausbeuten. Die Synthese der P-P-gekoppelten $[C_2B_2P]_2$ -Verbindungen **2a**, **b** gelingt ausgehend von den Derivaten **1a**-**d**^{3b}, die mit (Me₃C)₂Hg, C₂Cl₆ und TlCl nach bekannten Methoden zur Knüpfung von Phosphor-Phosphor-Bindungen^{5a,b} zu **2a**, **b** reagieren.

Als effiziente Methoden zur Herstellung von 2a, b hat sich die Umsetzung von 1a, b mit Di-*tert*-butylquecksilber

Chem. Ber. 124 (1991) 1497-1503 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/0707-1497 \$ 3.50+.25/0

im Molverhältnis 2:1 erwiesen. Die Komponenten bilden in wenig Toluol unter Wärmeentwicklung und Isobutanbildung dunkelbraune Suspensionen, aus denen nach mehrstündigem Erhitzen unter Hg-Abscheidung **2a**, **b** erhalten werden. Die Verbindung **2a** löst sich sehr gut in aromatischen und aliphatischen Solventien, **2b** kristallisiert als gelbe Schuppen aus wenig Toluol (> 90% Ausb.). **2a** ist ein hellgelbes, viskoses Öl, das destilliert wird (56% Ausb.).

Die Darstellung von 2a, b über die Silylverbindungen 1c, 1d ergibt geringere Ausbeuten. Die Umsetzung von Hexachlorethan mit Trimethylsilylphosphanen ist nach Appel et al.⁵⁾ eine gängige Methode, um zu P-Cl- oder P-Pverknüpften Organophosphanen zu gelangen. Bei analoger Vorgehensweise entsteht aus 1c und C₂Cl₆ (Molverhältnis 2:1) bei ca. -50° C in Pentan/CH₂Cl₂ (1:1) ein Produktgemisch, aus dem durch destillative Aufarbeitung 2a mit 22% Ausbeute isoliert wird. Erfolgt die Reaktion zwischen 1c und C₂Cl₆ bei 0°C, so verringert sich die Ausbeute an 2a beträchtlich infolge Ringspaltung. Die Umsetzung von 1d mit C₂Cl₆ führt zu analogen Resultaten wie bei 1c. Die Reaktion von 1c mit TlCl erfordert drastische Reaktionsbedingungen (ca. 160°C/12 h) und liefert 2a mit 51% Ausbeute.

NMR-Spektren und massenspektrometrische Untersuchungen von 2a,b

¹*H-NMR-Spektren:* Wegen der gehinderten Rotation um die BN-Bindung (BN- π -Population) finden sich paarweise anisochrone Ethyl- (**2a**) bzw. Isopropylprotonen-Sorten (**2b**) der Aminogruppen. Dieses Phänomen wird auch bei anderen Amino-Bor-substituierten 1*H*-1,2,5-Phosphadiborolen gefunden³⁾. Weitere Merkmale sind das Auftreten von ¹H,³¹P-Fernkopplungen. Die Ring-CH-Protonen von **2a**, **b** sind chemisch und magnetisch äquivalent, so daß diese mit den unterschiedlich entfernten ³¹P-Kernen (X,X') ein Triplettsignal vom Spinsystem [A₂X]₂ ergeben. Dieselben Verhältnisse werden für die (*E*)-Methinprotonen der Diisopropylaminogruppen (bezüglich der BN- π -Bindung) von **2b** beobachtet, deren Signal als Triplett eines Septetts erscheint. Für dic (*Z*)-Methinprotonen-Sorten konnte eine ³¹P,¹H-Kopplung nicht beobachtet werden.

¹³C-NMR-Spektren: Die ¹H-breitbandentkoppelten Spektren von **2a**, **b** zeigen ebenfalls Kopplungen. Entsprechend werden für die (E)-¹³C-Sorten der Aminogruppen (Resonanzsignal bei tieferem Feld³) Triplettsignale beobachtet. Die anderen ¹³C-Kerne [(Z)-¹³C-Sorten] treten als Singulettsignale in den Spektren auf. Für die am Bor gebundenen ¹³C-Kerne werden relaxationsverbreiterte Signale im erwarteten Bereich für sp²-hybridisierte ¹³C-Atome gefunden.

¹¹B- und ³¹P-NMR-Spektren: Die δ^{11} B-Werte für **2a** (46.5) und **2b** (49.9) liegen im erwarteten Bereich für C₂B₂P-Derivate³⁾. In den ³¹P{¹H}-entkoppelten NMR-Spekten finden sich ¹¹B-relaxationsverbreiterte Singuletts (**2a**: $\delta = -202.5$; **2b**: -195.7), deren chemische Verschiebungen im Vergleich zu den entsprechenden P-H- bzw. P-SiMe₃-substituierten Verbindungen **1a**-**d** nach wie vor relativ starke Hochfeldlage besitzen. Massenspektren: Das EI-Massenspektrum von 2a zeigt den Molekülpeak bei m/z = 446 mit 35% relativer Intensität und korrekter Isotopenverteilung. Als wesentliche Fragmentierung von $[M]^+$ wird $[M/2]^+$, d. h. ein C_2B_2P -Fünfringfragment gefunden (m/z = 223, 35%). Weitere Fragmentierungen sind Methylabspaltungen aus $[M/2]^+$. Im EI-Massenspektrum von 2b war der Molekülpeak nicht zu beobachten. Im DCI-Verfahren mit CH₄ jedoch trat der Molekülpeak bei m/z = 558 in 11% relativer Intensität auf. Bei m/z = 280 ist das erwartete Fragment-Ion $[M/2+1]^+$ ($I_{rel.} = 32\%$) nachzuweisen. Der Basispeak im Spektrum wird vom Ion $C_3H_7^+$ verursacht.

Komplexierung von 2a mit $(CO)_3Cr(CH_3CN)_3$ und 2b mit $(CO)_3Fe(C_8H_{14})_2$

Der Heterocyclentyp 2 weist zwei potentielle 4- π -Elektronensysteme auf, die über eine P-P-Bindung miteinander verknüpft sind. Um das Komplexierungsvermögen zu testen, wurde 2a mit Cr(CO)₃(CH₃CN)₃ (Molverhältnis 1:2.2) und 2b mit (CO)₃Fe(C₈H₁₄)₂ (C₈H₁₄ = Cycloocten) umgesetzt. Im Falle der Reaktion mit Cr(CO)₃(CH₃CN)₃ entsteht hierbei nicht der "doppelte" Cr(CO)₄-Halbsandwichkomplex, sondern der Bis-Cr(CO)₅-Komplex 4a.

4a wird durch mehrfaches Umkristallisieren als orangegelbe Plättchen analysenrein erhalten (19% Ausb.). Der Komplex ist in Lösung und als Feststoff lichtempfindlich. Versuche, 4a durch Erhitzen und UV-Bestrahlung umzuwandeln, führten nur zu Zersetzungsprodukten. Dagegen gelingt die Bildung eines "doppelten" Halbsandwich-Komplexes 5b durch Umsetzung von 2b mit Tricarbonylbis-(cycloocten)eisen. Die Konstitution der Komplexe 4a und **5b** ist durch NMR- und IR-Spektren gesichert. Im ¹H-NMR-Spektrum wird für 4a dasselbe Signalmuster wie für 2a beobachtet, während bei 5b durch das Fe(CO)₃-Fragment die beiden Dubletts in 2b (je 24H) zwei Dubletts (je 6H) und zwei breite Signale (24H und 12H) ergeben. Das Signal der vier Olefinprotonen in **2b** ($\delta = 7.40$, t) wird stark zu hohem Feld verschoben und bildet mit den Methinprotonen der Diisopropylaminogruppen einen Multiplettbereich. Im ¹³C-NMR-Spektrum werden bei **4a** die Ringkohlenstoffatome im Vergleich zu 2a nicht beeinflußt, während bei 5b die Hochfeldverschiebung von 94 ppm eindeutig die Beteiligung der Doppelbindung an der Komplexierung signalisiert. Das ¹¹B-NMR-Signal in **2a** erfährt durch die Komplexierung des Phosphors mit dem Cr(CO)₅-Fragment keine Beeinflussung. Dagegen wird in **2b** durch Komplexbildung mit dem Fe(CO)₃-Fragment eine Hochfeldverschiebung des ¹¹B-Signals von 19 ppm bewirkt, die damit auf eine *pentahapto*-Anordnung [Fe(η^5 -C₂B₂P)] hinweist. In den Komplexen **4a** und **5b** erfährt das ³¹P-NMR-Signal von **2a**, **b** eine Verschiebung um $\Delta\delta = 43$ bzw. 84 ppm.

Kristallstrukturanalysen von 2b, 4a und 5b

2b: Durch langsames Abkühlen einer 90 °C warmen Lösung von 2b in Toluol auf 25 °C konnten Kristalle für eine Kristallstrukturanalyse erhalten werden. Wie im Falle anderer C_2B_2P -Derivate³⁾ liegen in 2b nicht-planar koordinierte λ^3P -Atome vor. Die C_2B_2P -Fünfringe sind nicht eben, der Winkel zwischen den Ebenen B1-P2-B3 und B1-C5-C4-B3 beträgt 11.6°, bei 2,5-Bis(diisopropylamino)-1-phenyl-1H-1,2,5-phosphadiborol³⁾ hingegen 17°. Das Molekül besitzt eine kristallographisch bedingte zweizählige Drehachse. Die beiden C_2B_2P -Fünfringe sind zueinander verdrillt (Torsionswinkel: B1-P2-P2'-B1' 6.6°, B3-P2-P2'-B3' 167.0°). Die Boratome sind erwartungsgemäß trigonal planar koordiniert mit kurzem BN-Bindungsabstand (Tab. 2).

Abb. 1. Kristallstruktur von 2b

Der P-P-Bindungsabstand (2.192 Å) ist kürzer als in Diphosphanen üblich (2.21 – 2.24 Å)⁶⁾. In einem C₂B₂P₂-Derivat vom Typ 3 beträgt der P-P-Abstand 2.187 Å⁴⁾. Die B-P-Bindungslängen von 1.935 und 1.933 Å weichen nur unwesentlich von B-P-Einfachbindungslängen (1.95 – 1.98 Å)⁷⁾ ab. In 2,5-Bis(diisopropylamino)-1-phenyl-1*H*-1,2,5-phosphadiborol beträgt der B-P-Abstand 1.949 Å^{3a)}.

4a: Die beiden C_2B_2P -Fünfringe mit den $Cr(CO)_5$ -Gruppen am Phosphor sind bezüglich der P-P-Bindung um ca. 90° gegeneinander verdreht. Die Cr-Atome weisen oktaedrische Koordination auf. Die C_2B_2P -Ringe sind nicht eben, der Winkel zwischen den Ebenen B1-P1-B2 und B1-C1-C2-B2 beträgt 11 bzw. 12° .

Atom	×	У	z	ΰ
B1	0.6187(3)	0.3392(2)	0.89151(16)	0.038
P2	0.56351(6	0.30309(4)	0.80682(3)	0.033
В3	0.4757(3)	0.4089(2)	0.79635(15)	0.037
C4	0.5154(3)	0.47046(19)	0.85247(15)	0.042
C5	0.5850(3)	0.43695(19)	0.89849(15)	0.044
N1	0.3997(2)	0.42771(14)	0.74540(11)	0.043
C11	0.3797(3)	0.3647(2)	0.69234(16)	0.057
C12	0.2531(4)	0.3351(3)	0.6881(2)	0.085
C13	0.4251(4)	0.3981(3)	0.62782(16)	0.093
C14	0.3328(3)	0.5099(2)	0.73858(17)	0.054
C15	0.2488(3)	0.5222(2)	0.79499(17)	0.069
C16	0.4098(3)	0.5881(2)	0.7278(2)	0.081
N2	0.6876(2)	0.29008(14)	0.93357(11)	0.042
C21	0.7187(3)	0.1996(2)	0.91837(16)	0.048
C22	0.8482(3)	0.1906(3)	0.9024(2)	0.079
C23	0.6813(4)	0.1366(2)	0.97090(18)	0.072
C24	0.7416(3)	0.3236(2)	0.99452(17)	0.059
C25	0.8292(3)	0.3953(2)	0.9817(2)	0.082
C26	0.6496(4)	0.3483(3)	1.04429(16)	0.082

Tab. 2. Abstände [Å] und Winkel [°] für 2b

B1-P2 1.935(3) B1-C5 1.567(4) B1-N2 1.395(4)	P2-P2' 2.192(1) P2-B3 1.933(3) B3-C4 1.564(4)	B3-N1 1.391(4) C4-C5 1.341(4)
C5-B1-P2 106.4(2) N2-B1-P2 125.8(2) N2-B1-C5 127.4(2) B1-P2-P2'115.6(2)	B3-P2-P2'107.0(2) B3-P2-B1 91.4(1) C4-B3-P2 106.5(2) N1-B3-P2 125.7(2)	N1-B3-C4 127.6(2) C5-C4-B3 117.2(2)

Abb. 2. Kristallstruktur von 4a

Der P-P-Abstand (2.26 Å) zeigt die übliche Größenordnung in Diphosphan-Komplexen, die wenig abhängig von den Substituenten am Phosphor um den Mittelwert von 2.22 Å liegt⁸. Bemerkenswert sind die signifikanten Unterschiede der Cr-CO-Bindungsabstände der zum Phosphor *cis*- und *trans*-ständigen CO-Gruppen.

5b: Wie in **4a** sind die nicht-ebenen C_2B_2P -Ringe bezüglich der beiden Ebenen B1 - P2 - B3 und B1' - P2' - B3' ca. 95° gegeneinander verdreht. Jedoch sind die Fünfringe wegen der zusätzlichen Koordination der Olefin-Einheit zum Eisen stärker gefaltet als in **4a**. Die Faltung in **5b** ist mit

Tab. 3. Atomparameter für 4a. \overline{U} siehe Tab. 1

Cr1 1.13941(6) 0.14486(3) 0.34199(4 P1 0.93579(9) 0.08934(5) 0.29328(6 B1 0.9755(5) -0.0004(2) 0.2960(3)	0.053 0.044 0.053 0.057
P1 0.93579(9) 0.08934(5) 0.29328(6 B1 0.9755(5) -0.0004(2) 0.2960(3)	0.044 0.053 0.057
B1 0.9755(5) -0.0004(2) 0.2960(3)	0.053 0.057
	0.057
$B_2 = 0.8517(5) = 0.0800(3) = 0.3803(3)$	
C1 0.9411(5) -0.0253(3) 0.3697(3)	0.073
$C_2 = 0.8850(5) = 0.0130(3) = 0.4099(3)$	0.072
N1 1.0334(3) -0.03357(17) 0.2472(2)	0.061
N2 0.7926(3) 0.12528(18) 0.41479(19	0.061
C5 1.0645(7) -0.1014(2) 0.2597(4)	0.091
C6 1.0032(8) -0.1414(3) 0.1984(4)	0.135
C7 1.0738(4) -0.0073(2) 0.1818(3)	0.069
C8 1.2107(5) -0.0154(3) 0.1775(4)	0.109
C9 = 0.7504(6) = 0.1120(3) = 0.4865(3)	0.093
C10 0.6188(7) 0.0919(4) 0.4766(4)	0 154
$C_{11} = 0.7692(5) = 0.1889(2) = 0.3876(3)$	0 072
C12 0.8302(6) 0.2408(3) 0.4368(3)	0.092
C13 1.1054(4) 0.1440(2) 0.4403(3)	0.063
01 1.0961(4) 0.14304(18) 0.50123(19)	0.000
C14 1.2220(5) 0.0684(3) 0.3666(3)	0.075
02 1.2784(4) 0.02392(19) 0.3847(2)	0 112
C15 = 1.1963(4) = 0.1406(2) = 0.2505(3)	0 058
03 1.2424(3) 0.13694(18) 0.19912(19)	0.050
C16 = 1.0680(5) = 0.2258(3) = 0.3232(3)	0.065
04 1 0344 (4) 0 27616 (17) 0 3129 (2)	0.000
C17 = 0.2867(5) = 0.1860(2) = 0.3784(3)	0.033
05 0 3789(3) 0 2125(2) 0 4000(2)	0.072
$(r_2 = 0.60598(-6) = 0.17393(-3) = 0.16373(-4)$	0.104
$P_2 = 0.79650(9) = 0.10451(5) = 0.18756(5)$	0.041
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.049
B4 = 0.7391(4) = 0.0208(2) = 0.1025(3)	0.049
$C_3 = 0.8335(5) = 0.0643(3) = 0.0469(3)$	0.055
C4 = 0.7674(5) = 0.0186(2) = 0.0692(3)	0.063
N3 $0.9530(3)$ $0.16807(16)$ $0.08717(18)$	0.003
C18 = 1.0028(5) = 0.1715(3) = 0.0167(3)	0.075
C19 1.1201(5) 0.1342(3) 0.0185(3)	0 105
$C_{20} = 0.9878(5) = 0.2214(2) = 0.1361(3)$	0.067
$C_{21} = 0.9367(6) = 0.2840(2) = 0.1052(3)$	0.007
N4 $0.6747(3) = 0.02304(16) 0.1817(2)$	0.057
$C_{22} = 0.6275(8) - 0.0128(3) = 0.2504(4)$	0 103
(23 0.5901(10) -0.0551(4) 0.2917(5)	0.105
$C_{24} = 0.6349(5) = 0.0826(2) = 0.1426(3)$	0.275
$C_{25} = 0.5005(5) - 0.0812(3) - 0.1028(3)$	0.072
(26 0.5000(3) 0.1012(3) 0.1020(3))	0.095
0.0000(1) $0.000(2)$ $0.000(2)$	0.055
C27 = 0.6447(4) = 0.1971(2) = 0.0702(3)	0.081
07 0.6582(3) 0.20994(17) 0.01162(19)	0.057
$C_{28} = 0.5495(4) = 0.1448(2) = 0.2499(3)$	0.078
08 0.5065(3) 0.12608(19) 0.295(3)	0.039
$C_{29} = 0.6968(4) = 0.2438(2) = 0.29779(19)$	0.060
09 0 7445(4) 0 28765(16) 0 2264(3)	0.000
C30 0.4673(5) 0.2253(2) 0.1454(3)	0.053
010 0.3805(3) 0.25754(17) 0.1348(2)	0.095

Tab. 4. Abstände [Å] und Winkel [°] für 4a

Cr1-C13	1.906(5)	P1 -P2	2.264(1)	C27-07	1.144(6)
Cr1-C14	1.880(5)	B1 -C1	1.559(8)	C28-08	1.137(6)
Cr1-C15	1.891(5)	B1 -N1	1.378(7)	C29-09	1.135(6)
Cr1-C16	1.902(5)	B2 -C2	1.554(8)	C30-010	1.154(6)
Cr1-C17	1.840(5)	B2 -N2	1.374(7)	P2 -B3	1.968(5)
Cr1-P1	2.524(1)	C1 -C2	1.319(8)	P2 -B4	1.985(5)
C13-01	1.141(6)	Cr2-C26	1.894(4)	B 3 -C3	1.558(7)
C14-02	1.148(7)	Cr2-C27	1.905(5)	B3 - N3	1.383(6)
C15-O3	1.145(6)	Cr2-C28	1.900(5)	B4 -C4	1.546(7)
C16-04	1.142(6)	Cr2-C29	1.907(5)	B4 -N4	1.371(6)
C17-05	1.155(6)	Cr2-C30	1.842(5)	C3 -C4	1.319(7)
P1 -B1	1.965(5)	Cr2-P2	2.515(1)		
P1 -B2	1.983(6)	C26-06	1.146(5)		
B2-P1-B1	L 90.6(2)	C2-C1-B:	l 118.5(5)	С3-В3-Р2	2 105.6(3)
P2-P1-B1	1 105.8(1)	C1-C2-B2	2 118.5(5)	C4-B4-P2	2 105.4(3)
P2-P1-B2	2 112.1(1)	B3-P2-P3	l 11 1.8(1)	C4-C3-B3	3 118.4(4)
C1-B1-P1	1 105.8(3)	B4-P2-P:	l 107.3(1)	C3-C4-B4	4 118.6(4)
C2-B2-P1	L 105.3(3)	B4-P2-B	3 90.3(2)		

 26° geringer als im analogen Einkernkomplex (CO)₃Fe-[(HC)₂(BNⁱPr₂)₂PPh]⁹⁾ (29.6°). Der P-P-Bindungsabstand beträgt 2.16 Å und ist damit ca. 0.1 Å kürzer als in **4a** sowie um ca. 0.03 Å kleiner als im freien Liganden **2b**.

Abb. 3. Kristallstruktur von 5b

Aufgrund der ähnlichen Faltung der C₂B₂P-Fünfringe wie im Eisenkomplex (CO)₃Fe[(HC)₂(BN*i*Pr₂)₂PPh] ist ein Übergang von η^5 - in Richtung auf η^3 -Komplexierung des C_2B_2P -Liganden an das Fe(CO)₃-Fragment zu verzeichnen. Der Fe-B-Abstand in 5b liegt jedoch noch im Rahmen einer schwach bindenden Wechselwirkung zwischen Eisen und Bor, was auch durch die ¹¹B-NMR-Verschiebung signalisiert wird. Die Boratome zeigen im Vergleich zu den Ringkohlenstoffatomen und dem Phosphoratom deutlich vom Eisenatom weg. Aminosubstituenten am Bor setzen den Akzeptorcharakter des Boratoms herab, der für die Stärke der bindenden Metall-Bor-Wechselwirkung in Metallkomplexen mit bororganischen Liganden ausschlaggebend ist. Der verminderte Akzeptorcharakter der Boratome in 2a und 2b ist vermutlich dafür verantwortlich, daß bei der Verwendung von Chromcarbonyl-Fragmenten zur Komplexierung keine höhere Haptizität der Liganden an Chrom gefunden wird.

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247), dem Land Baden-Württemberg, dem Fonds der Chemischen Industrie, der BASF AG und der Degussa AG für die Förderung dieser Arbeit.

Experimenteller Teil

NMR: Bruker AC-200 (¹H, ¹³C), Jeol FX-90 (¹¹B, ³¹P); Standards: TMS (extern), $Et_2O - BF_3$ (ext.), 85proz. H_3PO_4 (ext.). – IR: Perkin-Elmer 710B. – MS: Varian MAT CH7, 70 eV. – Alle Untersuchungen wurden unter Ausschluß von Feuchtigkeit und Luft durchgeführt (N₂ als Inertgas). – Schmelzpunkte: unkorrigiert. – PE = Petrolether.

2,5-Bis(diethylamino)-2,5-dihydro-1H-1,2,5-phosphadiborol (1a): Zu einer Lösung von 4.90 g (37.7 mmol) LiPH₂·DME in 50 ml Petrolether (60/75 °C) werden bei -30 °C langsam unter Rühren 4.95 g (18.8 mmol) [HCB(Cl)NEt₂]₂ in 10 ml PE (60/75 °C) getropft. Man erwärmt auf 0 °C, wobei eine mäßige PH₃-Entwicklung eintritt. Es wird noch 1 h bei 20 °C gerührt, dann das LiCl abfiltriert, das Lösungsmittel i. Vak. entfernt und farbloses 1a bei 65 °C/10⁻³ Torr destilliert: 3.13 g (14 mmol, 74%). - ¹H-NMR (90 MHz, C₆D₆): $\delta = 2.24$ (d, 1, J_{PH} = 202.8 Hz), 1.41 (t, 6, J_{HH} = 7.8 Hz), 1.61 (t, 6, J_{HH} = 7.8 Hz), 3.53 (m, 8), 7.36 (br, d, 2, ³J_{HP} = 3.6 Hz). - ¹³C-NMR (50 MHz, C₆D₆): $\delta = 159$ (br, BC), 50.5 (d, NCH, ${}^{3}J_{CP} = 3.7$ Hz), 47.91 (s, NCH), 35.66 (s, NCCH₃), 23.10 (s, NCCH₃). $-{}^{11}B$ -NMR $\delta = 47.2$ ($b_{1/2} = 211$ Hz). $-{}^{31}P$ -NMR $\delta = -230.4$ (d, $J_{PH} = 202.8$ Hz). - MS-EI: m/z (%) = 224 (68) [M⁺], 195 (23) [M⁺ - Et], 59 (100).

2,5-Bis(diisopropylamino)-2,5-dihydro-1H-1,2,5-phosphadiborol (1b): In 150 ml PE (60/75°C) werden bei -10°C 10.5 g (32.9 mmol) [HCB(Cl)NiPr₂]₂ und 8.55 g (65.8 mmol) LiPH₂·DME gerührt. Die Mischung wird langsam auf +10°C erwärmt. Nach 1 h ist die

Tab. 5. Atomparameter für 5b. Ū siehe Tab. 1

Atom	x	У	Z	ប៊	Atom	x	У	z	Ū
Fe1	0.45691(18)	0.46758(19)	0.08060(13)	0.048	Fe4	0.09833(18)	0.6079(2)	0.21716(14)	0.057
Cla	0.4004(14)	0.4475(13)	0.0324(10)	0.072	Cld	0.1221(14)	0.6830(16)	0.1995(10)	0.078
01a	0.3597(10)	0.4384(10)	-0.0026(7)	0.097	01d	0.1374(9)	0.7315(10)	0.1904(6)	0.091
C2a	0.4820(17)	0.5315(18)	0.0587(11)	0.110	C24	0.1078(15)	0.6112(15)	0.2758(11)	0.092
02a	0.5043(11)	0.5795(12)	0.0453(8)	0.126	02d	0.1126(11)	0.6154(11)	0.3134(8)	0.128
C3a	0.5251(14)	0.4217(14)	0.0765(9)	0.071	C3d	0.173(2)	0.5804(18)	0.2226(12)	0.133
03a	0.5720(10)	0.3979(10)	0.0744(7)	0.103	03di	0.2290(13)	0.5640(13)	0.2297(9)	0.154
B1a	0.3621(15)	0.4871(15)	0.1136(10)	0.047	Bld	0.0109(15)	0.5238(16)	0.2162(11)	0.055
P2a	0.4084(3)	0.4061(3)	0.1277(2)	0.040	P2d	-0.0163(3)	0.6122(4)	0.1974(2)	0.048
B3a	0.4884(13)	0.4350(14)	0.1638(9)	0.033	B3d	0.0118(14)	0.6147(15)	0.1440(10)	0.045
C4a	0.4874(12)	0.5044(12)	0.1472(8)	0.051	C4d	0.0634(12)	0.5625(13)	0.1545(8)	0.054
UDa N1a	0.4221(12) 0.2969(10)	0.5511(12)	0.1223(8)	0.056	N14	-0.0014(12)	0.5100(12)	0.1896(9)	0.060
C6a	0.2300(10) 0.2717(13)	0.5670(14)	0.0907(0)	0.040	C6d	-0.0038(11) -0.0586(12)	0.4005(11)	0.2402(/)	0.071
C7a	0.3007(13)	0.5865(13)	0 0396(9)	0.079	C74	-0.0274(14)	0.5241(15)	0.3203(10)	0.033
C8a	0.2852(15)	0.6130(15)	0.1197(11)	0.104	C8d	-0.1063(14)	0.4498(15)	0.2668(10)	0.094
C9a	0.2420(13)	0.4486(13)	0.0883(10)	0.073	C9d	0.0323(14)	0.4249(15)	0.2659(11)	0.082
C10a	0.2141(14)	0.4331(14)	0.0420(10)	0.087	C10d	0.0247(14)	0.3813(15)	0,2275(10)	0.096
C11a	0.1885(13)	0.4753(13)	0.1119(9)	0.078	C11d	0.1048(13)	0.4447(13)	0.2892(9)	0.078
N2a	0.5403(10)	0.4034(10)	0.1939(6)	0.044	N2d	-0.0060(10)	0.6561(11)	0.1065(7)	0.053
C12a	0.5379(13)	0.3336(14)	0.2009(9)	0.066	C12d	0.0225(14)	0.6491(15)	0.0658(10)	0.080
C13a	0.5480(16)	0.3134(17)	0.2495(12)	0.118	C13d	0.0082(13)	0.5811(14)	0.0470(9)	0.085
C14a	0.5872(16)	0.2992(16)	0.1818(11)	0.108	C14d	0.0964(13)	0.6601(13)	0.0818(9)	0.067
C15a	0.6040(15)	0.4338(15)	0.2190(11)	0.093	C15d	-0.0498(13)	0.7124(13)	0.1061(9)	0.062
C16a	0.5942(17) 0.6454(19)	0.4830(17)	0.2514(12) 0.1070(12)	0.125	C160	-0.1035(16) -0.0103(15)	0.7143(16) 0.7749(16)	0.061/(11)	0.110
EL/a	0.0454(10)	0.4405(17) 0.2517(2)	0.1079(12) 0.11160(14)	0.155		-0.0103(15)	0.7749(10)	0.1090(11)	0.110
C1b	0.7206(16)	0.2054(16)	0.1272(11)	0.103	res Clo	0.61/3(4/	0.5192(3)	0.4540/(15)	0.097
01b	0.6820(11)	0.1792(11)	0.1406(7)	0.103		0.5002(10)	0.4703(10) 0.4358(10)	0.4862(-6)	0.089
C2b	0.7657(14)	0.2308(15)	0.0549(11)	0.090	C2e	0.597(3)	0.507(3)	0.396(2)	0.201
02b	0.7574(10)	0.2248(11)	0.0181(8)	0.118	02e	0.5808(16)	0.4897(16)	0.3570(12)	0.202
C3b	0.7328(18)	0.3243(19)	0.0984(12)	0.127	C3e	0.566(2)	0.580(2)	0.4476(13)	0.137
03ь	0.7075(14)	0.3701(15)	0.0912(10)	0.172	03e	0.5430(12)	0.6296(14)	0.4469(9)	0.144
B1b	0.8998(15)	0.2668(15)	0.1146(11)	0.056	B1e	0.6975(14)	0.4820(16)	0.5271(10)	0.051
P2b	0.8754(3)	0.1890(3)	0.1349(2)	0.040	P2e	0.7126(4)	0.4515(5)	0.4726(2)	0.077
B3b	0.8552(13)	0.2209(15)	0.1879(11)	0.036	B3e	0.7318(18)	0.5315(19)	0.4502(13)	0.088
C4b	0.8392(12)	0.2894(13)	0.1725(8)	0.057	C4e	0.6995(16)	0.5738(16)	0.4758(11)	0.107
C5D N1b	0.8609(11)	0.3145(12) 0.2927(10)	0.13/1(8)	0.045	C5e	0.6807(13)	0.5492(14)	0.5168(10)	0.081
CEP	0.9700(11)	0.2329(12)	0.0634(8)	0.050	NIE Céo	0.6891(10)	0.4444(11) 0.2761(15)	0.5636(/)	0.002
C7b	0.9324(12)	0.2129(12)	0.0168(8)	0.059	C7e	0.6941(14) 0.6261(16)	0.3/81(15)	0.5677(11)	0.111
C8b	1.0407(13)	0.2545(13)	0.0655(9)	0.073	C8e	0.7478(16)	0.3518(16)	0.6050(11)	0.106
С9Ъ	0.9331(14)	0.3500(14)	0.0615(9)	0.073	C9e	0.6752(15)	0.4759(15)	0.6064(10)	0.088
С10Ь	0.9772(14)	0.3974(14)	0.0983(10)	0.089	C10e	0.6083(15)	0.5074(15)	0.5944(11)	0.093
C11b	0.8661(12)	0.3707(12)	0.0387(8)	0.059	C11e	0.7336(16)	0.5210(16)	0.6270(11)	0.105
N2b	0.8492(9)	0.1862(11)	0.2265(7)	0.059	N2e	0.7665(13)	0.5456(15)	0.4153(9)	0.109
C12b	0.8580(14)	0.1134(15)	0.2310(10) 0.2750(10)	0.082	C12e	0.7685(17)	0.6115(19)	0.3994(12)	0.107
	0.9086(15)	0.0994(14) 0.0880(17)	0.2752(10) 0.2260(12)	0.092	C13e	0.8026(18)	0.6554(18)	0.4285(13)	0.138
C15b	0.7307(15)	0.0000(17) 0.2204(15)	0.2643(10)	0.088		0.6922(19) 0.7070(19)	0.6294(18)	0.3/09(13)	0.150
C16b	0.8811(16)	0.2682(16)	0.2840(11)	0.110		0.7979(10) 0.8708(18)	0.4920(10) 0.5148(17)	0.3375(12) 0 4018(12)	0.127
С17Ь	0.2587(16)	0.2567(16)	0.2485(11)	0.114	C17e	0.7613(19)	0.4753(19)	0.3500(14)	0.156
Fe3	-0.16315(19)	0.6828(2)	0.25594(13)	0.057	Fe6	0.7948(2)	0.2952(3)	0.41837(15)	0.109
C1c	-0.1038(16)	0.6831(16)	0.3059(11)	0.091	C1f	0.866(2)	0.3288(19)	0.4169(12)	0.130
01c	-0.0633(11)	0.6798(11)	0.3401(8)	0.126	01£	0.9126(13)	0.3623(13)	0.4162(9)	0.151
C2c	-0.2172(14)	0.7176(14)	0.2820(10)	0.084	C2f	0.826(2)	0.229(2)	0.3976(16)	0.176
02c	-0.2550(10)	0.7453(10)	0.2948(7)	0.110	02f	0.8383(13)	0.1817(15)	0.3839(9)	0.170
C3c	-0.2013(16)	0.6062(17)	0.2526(11)	0.098	C3f	0.733(2)	0.304(2)	0.3673(15)	0.143
03C	-0.2201(10)	0.5586(11)	0.2528(7) 0.1717(11)	0.099	031	0.7013(14)	0.3348(14)	0.3350(10)	0.110
BIC Blc	-0.1809(13)	0.6000(18)	0.1/1/(11)	0.052	BII D26	0.092(2)	0.2765(19)	0.4472(13)	0.110
Blo	-0.0920(5)	0.7623(15)	0.2000(2)	0.043	83f	0.7435(4)	0.3186(18)	0.4996(11)	0.002
C4c	-0.1689(12)	0.7694(12)	0.2174(8)	0.051	C4f	0.8206(13)	0.2561(14)	0.4831(9)	0.069
C5c	-0.2121(11)	0.7227(12)	0.1918(8)	0.043	C5f	0.7542(13)	0.2298(13)	0.4574(9)	0,065
N1c	-0.2100(9)	0.6192(10)	0.1403(7)	0.049	N1f	0.6264(14)	0.2640(14)	0.4294(9)	0.108
C6c	-0.1704(12)	0.5595(14)	0.1368(9)	0.067	C6f	0.5799(16)	0.3170(16)	0.4253(11)	0.097
C7c	-0.1772(14)	0.5558(15)	0.0829(10)	0.100	C7£	0.5220(15)	0.2991(15)	0.4450(11)	0.148
C8c	-0.2022(16)	0.5029(16)	0.1499(11)	0.106	C8f	0.5489(18)	0.3352(18)	0.3755(13)	0.204
C9C	-0.2791(13)	0.6193(13)	0.1133(9)	0.064	C9E	0.6045(18)	0.195(2)	0.4149(13)	0.131
C11c	-0.3284(14) -0.2937(14)	0.0104(13) 0.6801/1E/	0.1403(10)	0.033	C101	0.009/(18)	0.139(19)	0.450/(13)	0.141
N2c	-0.0421(10)	0.8010(11)	0.2468(6)	0.055	NOF	0.020(2/	0.3604/13	0.5288(8)	0.079
C12c	~0.0498(14)	0.8672(15)	0.2693(10)	0.092	C12f	0.8801(14)	0.4237(16)	0.5321(10)	0.080
C13c	-0.0912(13)	0.9105(13)	0.2333(9)	0.071	C13f	0.8779(16)	0.4501(16)	0.5764(11)	0.116
C14c	-0.0793(13)	0.8515(13)	0.3082(9)	0.072	C14f	0.9422(16)	0.4548(16)	0.5185(11)	0.123
C15c	0.0308(14)	0.7835(15)	0.2485(10)	0.092	C15f	0.9364(15)	0.3219(15)	0.5579(11)	0.086
C16c	0.0666(13)	0.7665(13)	0.2984(9)	0.078	C16f	0.9124(13)	0.2704(13)	0.5874(9)	0.080
C17c	0.0630(13)	0.8409(14)	0.2300(9)	0.077	j C17f	0.9785(14)	0.2885(15)	0.5303(10)	0.093

Tab. 6. Gemittelte Abstände [Å] und Winkel [°] für 5b

	Mittelwert	Bereich	esd
Fe - C1(2,3)	1.76	1.66 - 1.83	5
Fe - B1(3)	2.55	2.49 - 2.6 1	4
Fe - P2	2.37	2.35 - 2.39	1
Fe - C4(5)	2.14	2.10 - 2.18	4
P2 - B1(3)	1.94	1.88 - 2.00	4
P2 - P2'	2.16	2.15 - 2.16	2
B1(3) - C5(4)	1.54	1.47 - 1.61	5
C4 - C5	1.48	1.41 - 1.53	5
C5(4) - B1(3) - P2	99.0	97.3 - 102.6	25
B1 - P2 - B3	98.5	97.4 - 100.0	15
P2'- P2 - B1(3)	131.6	130.5 - 132.4	12
	122.8	120.6 - 124.4	10
B1(3)-C5(4)-C4(5)	118.3	113.8 - 120.5	25

PH₃-Entwicklung beendet, dann wird LiCl abfiltriert und die Lösung bis auf 20 ml eingeengt. Das ausgefallene Rohprodukt wird aus Pentan (-30 °C) umkristallisiert: 8.29 g (29.6 mmol, 90%) 1b, Schmp. 111–112 °C. – ¹H-NMR (200 MHz, C₆D₆): δ = 1.06 (d, 12, J_{HH} = 6.7 Hz), 1.16 (d, 12, J_{HII} = 6.7 Hz), 1.96 (d, J_{PH} = 203.4 Hz), 3.32 (sept, 2, J_{HH} = 6.7 Hz), 3.95 (d, sept, 2, ⁴J_{PH} = 2.2 Hz), 7.62 (d, 2, ³J_{PH} = 5.0 Hz). – ¹³C-NMR (50 MHz, C₆D₆): δ = 22.29 (s, CH₃), 25.19 (s, CH₃), 46.99 (d, NCH, ³J_{PC} = 2.5 Hz), 55.20 (d, NCH, ³J_{PC} = 5.0 Hz), 158.5 (br, BC). – ¹¹B-NMR δ = 46.2 (s, b_{V2} = 281 Hz). – ³¹P-NMR δ = -212.6 (d, J_{PH} = 203.5 Hz).– MS/EI: *m*/z (%) = 280 (51) [M⁺], 265 (21) [M⁺ – Me], 249 (16) [M⁺ – 2 Mc + 1], 237 (100) [M⁺ – *i*Pr], 43 (79) [*i*Pr⁺].

 $\begin{array}{rrrr} C_{14}H_{31}B_2N_2P \ (279.6) & \mbox{Ber. C} \ 60.08 \ H \ 11.07 \ N \ 10.01 \ P \ 11.07 \\ & \mbox{Gef. C} \ 59.65 \ H \ 11.10 \ N \ 9.88 \ P \ 10.09 \end{array}$

2,5-Bis(diethylamino)-2,5-dihydro-1-(trimethylsilyl)-1H-1,2,5phosphadiborol (1c): Bei 0°C werden zu 2.63 g (10 mmol) [HCB(Cl)NEt₂]₂ in 30 ml Pentan 6.56 g (20 mmol) LiP(Si-Me₃)₂ THF in 10 ml THF gegeben. Anschließend wird die Lösung 2 h bei 0°C, danach 5 h bei 20°C gerührt. Dann wird LiCl abfiltriert (1.66 g, quantitativ), das Lösungsmittel i.Vak. entfernt und der Rückstand fraktioniert: Sdp. 30-35 °C/ 10^{-3} Torr, Ausb. 2.4 g P(SiMe₃)₃ (0.6 mmol, 96%); 82°C/10⁻³ Torr, Ausb. 2.45 g (8.3 mmol, 83%) farbloses, öliges 1c. – ¹H-NMR (200 MHz, C₆D₆): $\delta = 0.98$ (d. 9, ${}^{3}J_{\rm PH} = 3.4$ Hz), 1.26 (2 t, 12, $J_{\rm HH} = 7.0$ Hz), 3.55 (q, 4), 3.75 $(dq, 4, {}^{4}J_{PH} ca. 2 Hz), 7.5 (d, 2, {}^{2}J_{PH} = 3.6 Hz). - {}^{13}C-NMR (50)$ MHz, C₆D₆): δ = 7.61 (d, SiCH₃, ²J_{PC} = 3.8 Hz), 19.76 (s, CCH₃), 21.34 (s, CCH₃), 46.38 (d, NCH₂, ${}^{3}J_{PC} = 16.4$ Hz), 161 (br, BC). -¹¹B-NMR $\delta = 48.7$ (s, $b_{1/2} = 253$ Hz). $- {}^{31}P{}^{1}H{}-NMR$: $\delta =$ -254.1 (s, b_{1/2} = 85 Hz). $-^{29}$ Si-NMR (17.75 MHz): $\delta = -10.31$ (br). - MS-EI: m/z (%) = 296 (100) [M⁺], 281 (10) [M⁺ - Me], 267 (55) $[M^+ - Et]$, 73 (52) $[SiMe_3^+]$.

2,5-Bis(diisopropylamino)-2,5-dihydro-1-(trimethylsilyl)-1H-1,2,5-phosphadiborol (1d): Aus 3.2 g (10.03 mmol) [HCB(Cl)NiPr₂]₂ und 6.57 (20.06 mmol) LiP(SiMe₃)₂ · THF werden analog 1c 2.5 g (10 mmol, 100%) P(SiMe₃)₃ und 3.08 g (8.75 mmol, 87.5%) 1d erhalten, Schmp. 92-93% (aus Pentan, 0°C). - ¹H-NMR (200 MHz, C₆D₆): δ = 1.03 (d, 9, ³J_{PH} = 3.4 Hz), 1.65 (d, 12, J_{HH} = 7 Hz), 1.82 (d, 12), 3.58 (d sept, 2, ⁴J_{PH} = 2.2 Hz), 4.78 (sept, 2), 7.61 (d, 2, ³J_{PH} = 4.3 Hz). - ¹³C-NMR (50 MHz, C₆D₆): δ = 7.51 (d, SiCH₃, ²J_{PC} = 5.5 Hz), 22.26 (s, CCH₃), 25.95 (s, CCH₃), 46.08 (s, NCH), 57.1 (d, NCH, ³J_{PC} = 17.6 Hz), 159 (br, BC). - ¹¹B-NMR (C₆D₆): δ = 47.4 (s, b_{1/2} = 338 Hz). - ³¹P{¹H}-NMR (C₆D₆): δ = -241 (b_{1/2} = 85 Hz). - ²⁹Si-NMR (17.75 MHz): δ = -10.0 (br). - MS/ EI: m/z (%) = 352 (30) [M⁺], 309 (96) [M⁺ - *i*Pr], 237 (100) [M⁺ - N*i*Pr₂ - Me], 73 (38) [Me₃Si⁺], 43 (89) [*i*Pr⁺].

 $C_{17}H_{39}B_2N_2PSi$ (351.7) Ber. C 57.95 H 11.07 N 7.95 P 8.80

Gef. C 57.20 H 11.07 N 7.66 P 8.62

2,2',5,5'-Tetrakis(diethylamino)-2,2',5,5'-tetrahydro-1,1'-bi(1H-1,2,5-phosphadiborol) (2a) und 2,2',5,5'-Tetrakis(diisopropylamino)-2,2',5,5'-tetrahydro-1,1'bi(1H-1,2,5-phosphadiborol) (2b): Die in wenig Toluol gelösten Komponenten 1a (1.42, 6.36 mmol) und (Me₃C)₂Hg (1.00 g, 3.18 mmol) bzw. 1b (1.00 g, 3.56 mmol) und (Me₃C)₂Hg (0.56 g, 1.78 mmol) werden in 10 ml Toluol zusammengegeben, wobei unter Wärmeentwicklung eine braune Suspension entsteht. Anschließend wird zum Sieden erhitzt, so daß sich nach ca. 2 h Quecksilber in Form kleiner Kügelchen abscheidet. Die nun intensiv gelbe, klare Lösung wird in der Hitze vom Hg dekantiert. 2a: Nach Abkühlen wird Toluol i.Vak. entfernt und der ölige Rückstand bei 148-150°C/10⁻³ Torr destilliert: 0.80 g (1.79 mmol, 56%) hellgelbes Öl. – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.47$ (t, 12, CH_2CH_3), 1.79 (t, 12, CH_2CH_3 , $J_{HH} = 7.1$ Hz), 3.47 (q, 8, CH_2CH_3), 3.86 (q, 8, CH₂CH₃), 7.31 (t, 4H, CH, ${}^{3}J_{PH} + {}^{4}J_{PH} = 5.9$ Hz). -¹¹B-NMR(CDCl₃): $\delta = 46.5$ (b_{1/2} = 479 Hz). - ¹³C-NMR (50 MHz, CDCl₃): δ = 21.65 (s, CH₃), 25.31 (s, CH₃), 46.81 (s, NC), 52.33 (t, NC, ${}^{3}J_{PC} + {}^{4}J_{PC} = 20.7$ Hz), 159 (br, BC). $- {}^{31}P$ -NMR (CDCl₃): $\delta = -205.2 \ (b_{1/2} = 85 \ \text{Hz}).$

2b: Durch Abkühlung der Toluol-Lösung auf 0°C kristallisiert. **2b** nahezu quantitativ aus (990 mg, 1.77 mmol, 99%), Schmp. 289°C (Zers.). Adsorbiertes Hg wird i.Vak. (10⁻³ Torr) bei 80°C vollständig entfernt. – ¹H-NMR (90 MHz, CDCl₃): $\delta = 1.13$ (d, 24, HCCH₃), 1.38 (d, 24, HCCH₃, $J_{\rm HH} = 6.8$ Hz), 3.38 [sept, 4, HC(H₃)₂], 4.41 (t, sept, 4, $J_{\rm HH} = 6.8$, ${}^{4}J_{\rm PH} + {}^{5}J_{\rm PII} = 4.4$ Hz), 7.40 (t, 4H, CH, ${}^{3}J_{\rm PH} + {}^{4}J_{\rm PH} = 7.6$). – ¹¹B-NMR (CDCl₃): $\delta = 48.9$ (b_{1/2} = 476 Hz). – ¹³C-NMR (CDCl₃) $\delta = 22.15$ (s, CH₃), 26.03 (s, CH₃), 45.48 (s, NC), 55.00 (t, NC, ${}^{3}J_{\rm PC} + {}^{4}J_{\rm PC} = 27.3$ Hz), 159 (br, BC). – ³¹P-NMR (CDCl₃): $\delta = -195.7$ (b_{1/2} = 88 Hz).

 $\begin{array}{cccc} C_{28}H_{60}B_4N_4P_2 \ (557.4) & \mbox{Ber. C} \ 60.28 \ \mbox{H} \ 10.84 \ \ N \ 10.04 \ \ P \ 11.11 \\ & \mbox{Gef. C} \ 60.20 \ \ \mbox{H} \ 10.76 \ \ N \ 10.10 \ \ P \ 11.11 \end{array}$

Darstellung von 2a, 2b aus 1c, 1d

2a: Längeres Erhitzen von **1c** (185 mg, 0.6 mmol) und TlCl (150 mg, 0.62 mmol) ohne Lösungsmittel bei ca. 160°C (Ölbadtemp.) führt zur allmählichen Bildung von elementarem Thallium. Nach 12 h liegen (³¹P-NMR-Kontrolle) ca. 90% **2a** ($\delta = -204.8$) und ca. 5–10% **1c** vor. Durch fraktionierende Kondensation erhält man **2a** als hellgelbes Öl; Ausb. 68 mg (0.15 mmol, 51%).

2a durch Umsetzung von **1c** mit C_2Cl_6 : Zur Lösung von **1c** (592 mg, 2.0 mmol) in 10 ml Pentan gibt man bei -50 °C langsam eine Lösung von C_2Cl_6 (237 mg, 1.0 mmol) in 5 ml CH₂Cl₂. Anschließend wird auf 0°C erwärmt und noch 2 h bei dieser Temp. gerührt. Nach Entfernen aller leichtflüchtigen Bestandteile i.Vak. wird vom Rohprodukt ein ³¹P- und ¹¹B-NMR-Spektrum aufgenommen: ³¹P{¹H} (CDCl₃): Signale geringer Intensität zwischen $\delta = -270$ und -290. Intensivstes Signal bei $\delta = -205.1$ (**2a**). - ¹¹B-NMR: $\delta = 48.1$; 34.0 (ca. 1:1). Nach fraktionicrender Destillation wird **2a** mit 22% Ausb. (98 mg, 0.28 mmol) isoliert.

2b: Durch Umsetzung von **1d** mit C_2Cl_6 wird **2b** analog der Darstellung von **2a** mit 28% Ausb. erhalten.

Decacarbonyl- μ -[2,2',5,5'-tetrakis(diethylamino)-2,2',5,5'-tetrahydro-1,1'-bi(1H-1,2,5-phosphadiborol)-P,P']dichrom (4a): Zu einer Suspension von Cr(CO)₃(CH₃CN)₃ (1.71 g, 3.43 mmol) in 50 ml Methylcyclohexan wird 2a (700 mg, 1.56 mmol) gegeben und 2 h bci 80 °C erhitzt. Hierbei entsteht eine trübe gelbbraune Lösung. Es wird über eine G4-Fritte abfiltriert, das Solvens i.Vak. (10⁻²

Torr) entfernt und der Rückstand in 20 ml Pentan aufgenommen. Erneutes Abfiltrieren und anschließendes Kristallisieren bei - 30°C ergibt orangegelbe Kristalle von 4a, die nochmals aus Toluol $(-30^{\circ}C)$ umkristallisiert werden: 253 mg (0.30 mmol, 19.5%), Schmp. 157°C (Zers.). - ¹H-NMR (200 MHz, C₆D₆): $\delta = 0.92$ (t, 12H, $J_{\rm HH}$ = 6.8 Hz), 1.10 (t, 12H, $J_{\rm HH}$ = 6.8 Hz), 3.07 (q, 8H, $J_{\rm HH}$ = 6.8 Hz), 3.20 bis 3.66 (br, 8H), 6.99 (t, 4H, ${}^{3}J_{PH} = 13.5$ Hz). - ${}^{13}C{}^{1}H$ -NMR (50 MHz, C₆D₆): δ = 14.59 (s, CH₃), 17.33 (s, CH₃), 43.31 (s, NCH₂), 51.50 (br, NCH₂), 155 (br, BC), 217.66 (t, CO, ${}^{2}J_{PC} + {}^{3}J_{PC} = 7$ Hz). $- {}^{11}B$ -NMR $\delta = 45.9$ (br, $b_{1/2}$ ca. 0.85 kHz). $-{}^{31}P{}^{1}H$ -NMR (36 MHz, C₆D₆): $\delta = -162.7$ (s, $b_{1/2} = 85$ Hz). - IR [v(CO), Pentan]: 2059 (m), 1977 (vs), 1937 (w) cm⁻¹. -MS (EI): m/z (%) = 638 (8) [(M - Cr(CO)_5)^+], 610 (6) [(M - $Cr(CO)_{6}^{+}$, 498 (100) [(M - Cr(CO)_{5} - 5CO)^{+}], 446 (35) [(M - $2 \operatorname{Cr}(\operatorname{CO}_{5})^{+}$], 223 (22) [(M - 2 \operatorname{Cr}(\operatorname{CO}_{5}/2)^{+}], 52 (44) [Cr⁺], 28 (100) [CO⁺]. $C_{30}H_{44}B_4Cr_2N_4O_{10}P_2$ (829.2)

Ber. C 43.41 H 5.31 N 6.75 P 7.47 Gef. C 43.78 H 5.52 N 6.99 P 7.80

Hexacarbonyl-µ-[2,2',5,5'-tetrakis(diisopropylamino)-2,2',5,5'-tetrahydro- η^5 : η^5 -1,1'-bi(1H-1,2,5-phosphadiborol/dieisen (5b): Die

Tab. 7. Einzelheiten zu den Röntgenstruktura	nalysen
von 2 b, 4 a, 5 b	-

	2 b	4 a	5 b
Formel	$C_{28}H_{60}B_4N_4P_2$	$C_{30}H_{44}B_4Cr_2N_4O_{10}P_2$	$C_{34}H_{60}B_4Fe_2N_4O_6P_2$
Molmase	558.0	829.9	837.8
Kristallsystem	rhombisch	monoklin	monoklin
Raumgruppe	Pcnb	$P2_1/n$	$P2_1/a$
Zellparameter a	11.415(4)	10.812(2)	21.30(2)
$\begin{bmatrix} A \end{bmatrix}$ und $\begin{bmatrix} c \end{bmatrix} b$	15.476(6)	21.386(5)	21.09(2)
с	20.576(9)	18.377(4)	31.13(2)
β		100.06(2)	105.51(7)
Zellvolumen[Å ³]	3635	4148	13473
Z	4	4	12
$d_{\rm ber}$ [g cm ⁻³]	1.02	1.32	1.24
$\mu(Mo-K_{\alpha})$ [cm ⁻¹]	1.09	6.0	7.1
2Θ _{max} [°]	50.0	50,0	40.0
Diffraktometer	Vierkreis	Zweikreis	Vierkreis
Strahlung	$Mo-K_{\alpha}$	$Mo-K_{\alpha}$	Mo-K _α
Scan	ω	ω	ω
Reflexe			
gemessen	3622	7305	13059
beobachtet	1751 $(I > 2\sigma_I)$	5476 ($I > \sigma_I$)	5416 ($I > 2\sigma_l$)
Verfeinerung			
anisotrop	P,N,C,B	Cr,P,O,N,C,B	Fe,P
isotrop	$H^{a)}$	H ^{a)}	O,N,C,B
Zahl der Parameter	221	527	685
R	0.038	0.067	0.123
R _w	0.046	0.059	0.136
Restelektronen- dichte [e Å ⁻³]	0.2	0.5	0.9

^{a)} Die H-Atome am Ring wurden in gefundenen Lagen isotrop verfeinert, die restlichen in berechneten Lagen bzw. bei CH3-Gruppen als Teil einer starren Gruppe.

Umsetzung von 2b (498 mg, 79 mmol) mit (CO)₃Fe(C₈H₁₄)₂ (640 mg, 1.78 mmol) erfolgt bei -20°C in 50 ml Toluol, anschließend wird ca. 12 h bei Raumtemp. gerührt. Nach Entfernen des Solvens i.Vak. (10⁻²Torr) wird das Rohprodukt über Al₂O₃ (5% H₂O) gereinigt. Mit Toluol als Eluens erhält man 5b als rote Fraktion, nach Einengen rote Kristalle, Ausb. 270 mg (0.32 mmol, 36%), Schmp. 213°C (Zers.). – ¹H-NMR (200 MHz, C₆D₆): $\delta = 0.95$ (d, 6H, ${}^{3}J_{HH} = 6.4$ Hz), 1.11 (d, 6H, ${}^{3}J_{HH} = 7.0$ Hz), 1.25 (br, s, 24H), 1.36 (br, s, 12H), 2.9-4.1 (m, 12H). $-{}^{13}C{}^{1}H$ -NMR (50 MHz, C₆D₆): $\delta = 21.96, 22.3, 22.75, 23.21, 24.29, 26.12$ (jeweils s, NCCH₃), 45.09, 45.40, 53.68, 54.99 (jeweils s, NC), 62 (br, BC), 214.03 (s, CO). -¹¹B-NMR (28 MHz, C₆D₆): $\delta = 30.8$ (s, $b_{1/2} = 860$ Hz). - ³¹P-NMR (81 MHz, C₆D₆): $\delta = -111.8$ (s, $b_{1/2} = 130$ Hz). - MS (EI): m/z (%) = 838 (7) [M⁺], 754 (2) [(M - 3 CO)⁺], 726 (10) [(M - $4 \text{ CO})^+$], 670 (100) [(M - 6 CO)⁺], 614 (30) [(M - 6 CO -Fe)⁺], 363 (3) $[(M/2 - 2 \text{ CO})^+]$, 335 (34) $[M/2 - 3 \text{ CO})^+]$, 279 (6) $[(M/2 - Fe(CO)_3)^+]$. - IR [v(CO)] (*n*-Hexan): 2031.5, 2022.5, 1961.0, 1951.5 cm⁻¹.

C₃₄H₆₀B₄Fe₂N₄O₆P₂ (837.8) Ber. C 48.74 H 7.21 N 6.68 Gef. C 49.13 H 7.65 N 6.59

Röntgenstrukturanalysen¹⁰): Kristalldaten und Einzelheiten zu den Strukturbestimmungen sind in Tab. 7 zusammengefaßt. Wegen der schlechten Kristallqualität von 5b konnten nur relativ wenige Reflexe gemessen werden. Daher ist die Strukturbestimmung ungenau. Die drei unabhängigen Moleküle stimmen innerhalb der Meßgenauigkeit überein. Alle Rechnungen wurden mit den Programmen SHELX 76 und SHELXS 86111 durchgeführt.

- ²⁾ W. Siebert, *Pure Appl. Chem.* 59 (1987) 947.
 ³⁾ 3a M. Drieß, H. Pritzkow, W. Siebert, *Angew. Chem.* 99 (1987) 789; *Angew. Chem. Int. Ed. Engl.* 26 (1987) 781. ^{3b)} M. Drieß, ⁴⁾ M. Drieß, H. Pritzkow, W. Siebert, *Chem. Ber.* **122** (1989) 467. ⁵⁾ ^{5a} R. Appel, K. Geisler, H. Schöler, *Chem. Ber.* **110** (1977) 367. –
- ^{5b)} E. A. Abel, R. A. McLean, T. H. Sabherwal, J. Chem. Soc. A 1986, 2371.
- ⁶⁾ D. E. C. Corbridge in The Structural Chemistry of Phosphorus, Elsevier, Amsterdam 1974.
- ⁷⁾ M. Feher, R. Fröhlich, K. F. Tebbe, Z. Anorg. Allg. Chem. 474 (1981) 31.
- ⁸⁾ G. Huttner, R. Friedrich, H. Willenberg, H. D. Müller, Angew. Chem. 89 (1977) 268; Angew. Chem. Int. Ed. Engl. 16 (1977) 260.
- ⁹⁾ M. Drieß, P. Frankhauser, H. Pritzkow, W. Siebert, Publikation in Vorbereitung
- ¹⁰⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55184, der Autoren und des Zeitschriftenzitats angefordert werden.
- ¹¹⁾ G. M. Sheldrick, SHELX 76, A Program for Crystal Structure Determination, Cambridge 1976; SHELXS 86, Göttingen 1986.

[411/90]

¹⁾ Übersicht: W. Siebert, Adv. Organomet. Chem. 18 (1980) 301; G. E. Herberich, Compr. Ortganomet. Chem. 1 (1982) 381; W. Haubold, A. Gemmler, Chem. Ber. 113 (1980) 3352.